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Introduction Some environmental multiway data

Hyperspectral imaging principle

Each image is a mixture of various materials.

Each material has a unique spectral response.
Credits for illustrations : Veganzones(left) and Bioucas(right)
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Introduction Some environmental multiway data

Hyperspectral Data

Snow in the Alps [Veganzones,2015]
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Introduction Some environmental multiway data

Another example : Fluorescence Spectroscopy

Source Monochromator

c11c12c13

sensor

ci1 ci2 ci3

sensor

[Acar,2013]

λex Intensity

Intensity

λem

λem
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Introduction Some environmental multiway data

Fluorescence Spectroscopy Data

λem

λex

Experiments

T

Multiway arrays (tensors) appear naturally in data processing.

Data are mixtures of signals unique to each material or chemical.
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Introduction Canonical Polyadic Decomposition

Main Issue : unmixing the data

How to extract meaningful information from multiway data ?
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Introduction Canonical Polyadic Decomposition

Unmixed data = rank 1 tensors

In some cases, meaningful information is contained in simpler tensors i.e.
rank 1 tensors :

Tijk = aibjck

ai

ck
bj
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Introduction Canonical Polyadic Decomposition

Main tool : Canonical Polyadic Decomposition

Canonical Polyadic Decomposition [Hitchcock,1927] aims at extracting all
R components.

= + · · · +

Tensor = first component + · · · + Rth component

Unmixing does not require additional knowledge

Not applicable for 2-way arrays
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Introduction Challenges in environmental data mining

Challenges in environmental and biomedical data mining

Constrained Decompositions - Compressed Decompositions

→ Nonnegative Large tensor

Data Fusion
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Jérémy E. Cohen (GIPSA-Lab, CNRS) Environmental Multiway Data Mining Funded by ERC Decoda 11 / 41



Compressed Constrained CPD

1 Introduction

2 Compressed Constrained CPD
Some definitions and properties
Compressed-based CPD
Nonnegative CPD

3 Multiway Data Fusion

4 Current Works

5 Conclusion
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Compressed Constrained CPD Some definitions and properties

Some notations

=

T =

+ · · · +

a1 ⊗ b1 ⊗ c1+ · · · + aR ⊗ bR ⊗ cR

= •1 •2 •3

T = (A ⊗ B ⊗ C) IR

T has sizes K × L×M A = [a1, . . . , aR ] has sizes K × R
⊗ is the tensor product •i is the contraction on mode i

R is the rank of T , i.e. smallest number of rank-one tensors spanning T .
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Compressed Constrained CPD Some definitions and properties

Some definitions and properties : multilinear transformation

Definition (Orthogonal Tucker Decomposition)

A tensor T ∈ RK ⊗ RL ⊗ RM can be expressed in an orthonormal basis
U⊗ V ⊗W so that

T = (U⊗ V ⊗W)G

where U ∈ K × R1, V ∈ L× R2, W ∈ M × R3 and R1,R2,R3 ≤ rank(T ).

= •1 •2 •3

T = (U

R1

⊗ V ⊗ W) G

Ac

Bc
Cc

A

B
C
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Compressed Constrained CPD Some definitions and properties

Tensor compression in the noisy case

In the noisy case : (approximate) truncated HOSVD
[DeLathauwer,2000]

≈ •1 •2 •3

T ≈ (U

R1

⊗ V ⊗ W) G

Ac

Bc
Cc

A

B
C

where ÛN1 = TSVD(T(1)) V̂N2 = TSVD(T(2))

ŴN3 = TSVD(T(3))

T̂ ≈ (Û⊗ V̂ ⊗ Ŵ)Ĝ and Ĝ = (Ac ⊗ Bc ⊗ Cc)IR + Ec
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Compressed Constrained CPD Compressed-based CPD

Tensor CPD using compression

1 Compress T using any fast HOSVD

2 Decompose Ĝ to get Âc , B̂c , Ĉc

3 Decompress : Â = ÛÂc , B̂ = V̂B̂c , Ĉ = ŴĈc

Time in seconds for CP dec. N × N × N - rank 5 random tensor :

N 10 50 100 200 300

Alternating Least Squares (ALS) 0.36 0.70 1.92 7.13 26.43
Compressed ALS 0.33 0.39 0.45 0.93 2.14
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Compressed Constrained CPD Nonnegative CPD

Nonnegativity constraints

In many applications : A,B,C > 0

Compressed Nonnegative CPD :

min.
Ac ,Bc ,Cc

‖Ĝ − (Ac ⊗ Bc ⊗ Cc)IR‖2
F

sub. to ÛAc , V̂Bc , ŴCc > 0

Issue : Difficult exact projection on ÛAc ≥ 0
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Compressed Constrained CPD Nonnegative CPD

The uncompressed projective algorithm : ANLS

The cost function is minimized with respect to each factor alternatively :

min.
A

‖T − (A⊗ B⊗ C)IR‖2
F

sub. to A ≥ 0

First, the unconstrained least squares update is computed :

Â = T1 (B� C)†

Then the least squares estimate is projected on the constraint space :

Â =
[
Â
]+
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Compressed Constrained CPD Nonnegative CPD

Approximate projection and PROCO-ALS

Approximate projection Π :

Given Least Squares update Âc

1 Decompression : Â := ÛÂc

2 Projection : Â :=
[
Â
]+

3 Compression : Âc := ÛTÂ

Π
[
Â
]

= UT [UAc ]+

Projected and compressed framework (PROCO) [Cohen,2014]
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Compressed Constrained CPD Nonnegative CPD

Other possible algorithms and related problems

PROCO-ALS [Cohen,2014], Compressed-AOADMM [Cohen,2016]

minimize ‖Ĝ − (Ac ⊗ Bc ⊗ Cc)IR‖2
F

w.r.t. Ac ,Bc ,Cc

s.t. ÛAc � 0

Tensorlab 3.0 [Vervliet,2016]

minimize ‖
(

Û⊗ V̂ ⊗ Ŵ
)
Ĝ − (A⊗ B⊗ C)IR‖2

F

w.r.t. A,B,C
s.t. A � 0

AOADMM [Huang,2015], FastNNLS [Bro,1997], ANLS

minimize ‖T − (A⊗ B⊗ C)IR‖2
F

w.r.t. A,B,C
s.t. A � 0
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Compressed Constrained CPD Nonnegative CPD

Simulated Data

Size : 100× 100× 100
Rank : 5
Gaussian factors
Ri : 5× 5× 5
SNR : 30dB
Gaussian i.i.d. noise
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Compressed Constrained CPD Nonnegative CPD

Experimental Data : Fluorescence Spectroscopy

Fluorescence spectroscopy data :
excitation spectra
emission spectra
mixtures

multimodal chemometrics data set from [Acar,2013]

Description

5 compounds : Valine-Tyrosine-Valine (Val), Tryptophan- Glycine (Gly),
Phenylalanine (Phe), Maltoheptaose (Mal) and Propanol (Pro)

Nb. of excitation wave lengths 21 (A)
Nb. of emission wave lengths 251 (B)

Nb. of Mixtures 28 (C)
Missing values 30% (replaced by zeros)
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Compressed Constrained CPD Nonnegative CPD

Experimental data : Results
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Multiway Data Fusion Problem statement

Direct coupling [Harshman,1984]

= •1 •2 •3

T 1 = (A1 ⊗ B1 ⊗ C) IR

= •1 •2 •3

T 2 = (A2 ⊗ B2 ⊗ C) IR

Example : Fluorescence spectroscopy data and Nuclear Magnetic
Resonance data
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Multiway Data Fusion Problem statement

Direct coupling (2)

∀ i ∈ [1,N],

{
T i = (Ai ⊗ Bi ⊗ Ci )IR + E i

Ci = C∗

If the noises E i are Gaussian with i.i.d. entries, then the Maximum
Likelihood Estimator (MLE) of the factors is

argmin
Ai ,Bi ,C

N∑
i=1

‖T i − (Ai ⊗ Bi ⊗ C∗)IR‖2
F

For computation,

CMTF by Acar et al.

ALS by Cabral Farias, Cohen et al. (Tensor Package)

Tensorlab 3.0 by Vervliet et al.
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Multiway Data Fusion Problem statement

Other coupling models

Parafac 2 [Harshman,1972] :

∀i ∈ [1,N],


T i = (A⊗ B⊗ Ci ) ΣiR + E i

Ci = PiC
∗

PT
i Pi = I

Shift Parafac [Harshman,2003] :

∀i ∈ [1,N],

{
Mi = (A⊗ Bi ) ΣiR + Ei

b
(i)
r = τ δir (b∗r )

A more general framework ?
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Multiway Data Fusion Flexible data fusion

General Framework using a Bayesian approach [Cabral
Farias, Cohen,2015]

Parameters θi =

 vec(Ai )
vec(Bi )
vec(Ci )

 are random

Known prior distribution p(θ1, . . . ,θN) and likelihoods p(Yi |θi )

MAP estimation under conditionnal independance

arg max
θ1,...,θN

p(θ1, . . . ,θN |Y1, . . . ,YN) = arg min
θ1,...,θN

Υ(θ1, . . . ,θN)

Υ(θ1, . . . ,θN) = −
N∑
i=1

log p(Yi|θi )− log p(θ1, . . . ,θN)

= data fitting terms + coupling
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Multiway Data Fusion Flexible data fusion

Examples of flexible coupling models

Noisy exact coupling on Ci

∀ i ∈ [1,N],


T i = (Ai ⊗ Bi ⊗ Ci )IR + E i

Ci = C∗ + Γi

Γi ∼ AN
(

0, 1
σ2
c,i

I⊗ I

)

Υ(θ1, . . . ,θN ,C
∗) = −

N∑
i=1

1

σ2
1

‖T i − (Ai ⊗ Bi ⊗ Ci )IR‖2
F −

N∑
i=1

1

σ2
ci

‖Ci − C∗‖2
F

Linear coupling on Ci

∀ i ∈ [1,N],


T i = (Ai ⊗ Bi ⊗ Ci )IR + E i

HiCi = HjCj + Γij

Γij ∼ AN
(

0, 1
σ2
ij
I⊗ I

)
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Multiway Data Fusion Flexible data fusion
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Multiway Data Fusion Flexible data fusion

Optimization Strategies

Alternating Least Squares (ALS) based methods

Fast

Simple to implement

Tackle various coupling models

Require warm initialization

Unadapted for non-Gaussian distributions

Second-order methods (Tensorlab 3.0)

Tackle a wide variety of models and noise distributions

Not very sensitive to initialization

Slow
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Multiway Data Fusion Experiments

Simulation : Resampling Bandlimited Signals

Bandlimited periodic signal

0 1 2 3 4

Sampling grid for C2

0 1 2 3 4

−2

−1

0

1

2

t - Sampling grid for C1

A
m

p
lit

u
d

e

c(1)(t) c
(1)
1 c

(1)
2
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Multiway Data Fusion Experiments

Simulation : Resampling Bandlimited Signals

A1

⊗

B1

⊗

C1

24

A2

⊗

B2

⊗ 37

C2

10

3

(1/σ2
c )‖C1 −HC2‖2

F

High SNR
σ1 = 0.001

(((((hhhhhShannon

Low SNR
σ′2 = 0.4

Shannon

Total MSE on the continuous functions (numerical integration)

C1 (((((hhhhhShannon C2 noisy

Uncoupled 33.4968 2.6581

Coupled 33.4968 1.0375
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Multiway Data Fusion Experiments

Experimental Data : NMR

Nuclear magnetic resonance data :
chemical shifts
gradient levels
mixtures

same sample presented previously : coupling through C

Nb. of chemical shifts 13324 (A′)
Nb. of gradient levels 8 (B′)

Nb. of Mixtures 28 (C)
Missing values 0% (replaced by zeros)

Jérémy E. Cohen (GIPSA-Lab, CNRS) Environmental Multiway Data Mining Funded by ERC Decoda 32 / 41



Multiway Data Fusion Experiments

Results : Relative Concentrations of Phenylalanine

10 12 14 16 18 20
0

5 · 10−2

0.1

0.15

0.2

Uncoupled ALS

C
on

ce
n

tr
at

io
n

s

10 12 14 16 18 20
0

5 · 10−2

0.1

0.15

0.2

Hybrid ALS σc = 5

10 12 14 16 18 20
0

5 · 10−2

0.1

0.15

0.2

Exact coupled ALS

10 12 14 16 18 20
0

5 · 10−2

0.1

0.15

0.2

Hybrid ALS σc = 2

10 12 14 16 18 20
0

5 · 10−2

0.1

0.15

0.2

Hybrid ALS σc = 0.5
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Current Works

Joint Compression

= •1 •2 •3

T 1 = (U1 ⊗ V1 ⊗ W) G1

A1

B1
C

= •1 •2 •3

T 2 = (U2 ⊗ V2 ⊗ W) G2

A2

B2
C
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Current Works

Dictionary-based CPD : Linear and Sparsity constraints
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Conclusion
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Conclusion

Conclusions

Fast algorithm PROCO-ALS for constrained decompositions when
projection is available. Need more theoretical results.

Data fusion framework, first step towards non-trivial coupling models.
More experimental data required.

Among other research topics covered during the PhD : non-linear
fluorescence tensor decomposition, notations, data fusion for
Gaze-EEG data.
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Conclusion
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Rank and minimum compressed dimensions

Singular values from the HOSVD

1 2 3 4 10

10−2

10−1

Index of singular values

Σ
[
T(1)

]
Σ
[
T(2)

]
Σ
[
T(3)

]

Exproratory : it suggests a Rank 2 or 3 : Mal and Pro are not fluorescent
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Modeling



T EEM = (AEEM ⊗ BEEMCEEM)I3 + EEEM

T NMR = (ANMR ⊗ BNMRCNMR)I5 + ENMR

CEEM = CNMR(r = 1, 2, 3) + Γc

‖cEEMi ‖1 = 1 ∀i ≤ 3
EEEM ∼ AN (0, I21 ⊗ I251 ⊗ I28)

ENMR ∼ AN
(

0, 1
σ2
NMR

I8 ⊗ I13324 ⊗ I28

)
Γc ∼ AN

(
0, 1

σ2
c
I28 ⊗ I3

) C1

C2

σc , r = 3
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Challenges in environmental data mining

Constrained Compression{
G = (Ac ⊗ Bc ⊗ Cc)IR + Ec

WCc ∈ SC

Multiway Data Fusion
T i = (Ai ⊗ Bi ⊗ Ci )IRi

+ E i

Ai = f
(A)
i (A∗) , f

(A)
i ∈ F (A)

Bi = f
(B)
i (B∗) , f

(B)
i ∈ F (B)

Ci = f
(C)
i (C∗) , f

(C)
i ∈ F (C)
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Some definitions and properties : tensor space and rank

Definition (Tensor space)

A tensor space E ⊗ F is the linear space obtained by mapping all bilinear
maps on E × F to linear maps. It is unique up to isomorphisms.

Definition (Tensor and rank)

A real valued tensor T is a vector of a tensor space (RK ⊗ RL ⊗ RM ,⊗).
The rank of T is the minimal number of elements a⊗ b⊗ c needed to
express T . A tensor can be considered low rank when R is much smaller
than the dimensions K , L,M.

When the tensor product ⊗ is cast as the outer product ◦, tensors can be
considered as multiway arrays without loss of generality.
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Results : Emission spectra and chemical shifts
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