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Jérémy E. Cohen, Nicolas Gillis

UMONS, FNRS

March 21, 2018

J.E.Cohen (UMONS, FNRS) Environmental Data Mining March 21, 2018 1 / 37



Introduction and Notations

Tensors in Signal Processing

Data tensor
Ex : freq × time × sensor

Tensor model = Accounting for structure

Images : crédits à L. Korczowski et J.B-Dias
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Introduction and Notations

Hyperspectral imaging principle

Each image is a linear mixture of various spectral signatures.

Each material has a unique spectral response.
Credits for illustrations: Veganzones (left) and Bioucas (right)
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Introduction and Notations

Liquid Chromatography — Mass Spectroscopy component
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Introduction and Notations

Mass over charge intensities form a tensor

T (λ, t, k) =
R∑

r=1

ar (λ)br (t)cr (k)

Tijk =
R∑

r=1
airbjrckr

air

ckr
bjr
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Introduction and Notations

A tool for LRA: Canonical Polyadic Decomposition

Canonical Polyadic Decomposition [Hitchcock,1927] aims at extracting all
R components.

= + · · · +

Tensor = first component + · · · + Rth component

Unmixing in theory does not require additional knowledge for order 3
and more.

For matrices, not unique if R > 1 → SVD (orthogonality), NMF
(non-negativity).
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Introduction and Notations

CPD

=

T =

+ · · · +

a1 ⊗ b1 ⊗ c1+ · · · + aR ⊗ bR ⊗ cR

= •1 •2 •3

T = (A ⊗ B ⊗ C) IR

T has sizes K × L×M A = [a1, . . . , aR ] has sizes K × R
⊗ is the tensor product •i is the contraction on mode i

R is the rank of T , i.e. smallest number of rank-one tensors spanning T .
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Introduction and Notations

Tensor decomposition as an approximation problem

min.
A,B,C

‖T − (A⊗ B⊗ C)IR‖

sub. to A,B,C ∈ CA,B,C

Non-convex in the general case but convex with respect to each block
A,B,C.

Example: Non-negative Matrix Factorization with Frobenius norm

min.
A,B

‖M− ABT‖2
F

sub. to A ≥ 0 B ≥ 0
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Introduction and Notations

Challenges in tensor signal processing

Multidimensional structure not exploited !

t = t0

%
t = t1

Main issues:

Interpretability Tensor formalism Constraints / Size

I. Informed decom.

=

II. Data fusion

=

=

III. Optimisation

=≥ 0
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Challenge I: Identification.



Facing the challenges Dictionary-based CPD

Identification may be an issue
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Facing the challenges Dictionary-based CPD

Let’s choose A from a dictionary

=

A = D S

X = DSBT = D(:,K)BT or T = (DS⊗ B⊗ C)IR where ‖S‖col ,0 = 1

I. Theorem: If spark(D) > R and K has no repetition,

(i) if there exist (K,B) so that M = D(:,K)B, then it is unique.

(ii) argmin
K,B,C

‖T − (D(:,K)⊗ B⊗ C)IR‖2
F existe.

J.E.C. and N.Gillis, ”Dictionary-based Tensor Canonical Polyadic Decomposition”, IEEE Trans. on Signal Proc., 2018
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Facing the challenges Dictionary-based CPD

Flexibility and Separability

Flexibility

A ≈ DS

Standard case

A = DS

Separability

A = XS
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Facing the challenges Dictionary-based CPD

Matching Pursuit ALS (works for high-order tensors)

An alternating nonnegative least squares method where A, K and B are
estimated alternatively.

Input: Initial A, B, K (Using e.g. SPA, VCA. . . ).
Run a few iterations of NMF.
while stopping criterion is not met,

Â = argmin
A≥0

‖X− ABT‖2
F

K̂(i) = argmax
j

dT
j Âi ∀i ∈ [R]

B̂ = argmin
B≥0

‖X−D(:, K̂)BT‖2
F

Output: Selected atoms set K and abundances B.
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Facing the challenges Dictionary-based CPD

Pros and Cons

Pros

! Can be adapted to N-way arrays.

! Can be adapted for more complex estimation schemes of A and B.

! One iteration has the same complexity as geometric methods.

! Low memory requirements.

! Tries to minimize an explicit cost function.

Cons

% Very sensitive to initialization.

% No convergence proof.

% Requires the knowledge of R.
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Facing the challenges Dictionary-based CPD

Application to Spectral Unmixing with Pure pixels

Spectra extracted exactly from the data (in red )
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Facing the challenges Dictionary-based CPD

Application to Spectral Unmixing with Pure pixels

Spectra (in blue) close the data (in red)
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Toolbox available on my personal webpage jeremy-e-cohen.jimdo.com

[Cohen Gillis, 2017]
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Facing the challenges Dictionary-based CPD

Multiple Dictionary for Hand-Picking Pure Pixels

Sources 𝑎𝑖 Libraries 𝐷𝑘

A = [D1(:,K1), . . . ,Dp(:,Kp)]Π
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Facing the challenges Dictionary-based CPD

Example: Supervised Multiple Dictionary learning
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Facing the challenges Dictionary-based CPD

Example: Unsupervised version using segmentation

J.E.Cohen (UMONS, FNRS) Environmental Data Mining March 21, 2018 20 / 37



Challenge II: Subject Variability and Multimodality.



Facing the challenges Multiway Data Fusion

Subject Variability

=

M1 = A Σ1 BT
1

...

=

Mi = A Σi BT
i

Example: LC-MS data.
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Facing the challenges Multiway Data Fusion

Data Fusion with tensors

= •1 •2 •3

T 1 = (A1 ⊗ B1 ⊗ C1) IR

= •1 •2 •3

T 2 = (A2 ⊗ B2 ⊗ C2) IR

Example: Fluorescence and NMR data. Often C1 := C2. But:

the sampling rates can be different?

the relation may not be trivial? Can it be learned?

how does coupling affect the cost function?
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Facing the challenges Multiway Data Fusion

General Framework using a Bayesian approach [Cabral
Farias, Cohen,2015]

Parameters θi =
[

vec(Ai ); vec(Bi ); vec(Ci )
]

are random

Known prior distribution p (θ1, . . . ,θN) and likelihoods p(Yi |θi )

Deterministic point of vue: θi = φi (θ
∗) for some fixed function φi .

MAP estimation under conditionnal independance

arg max
θ1,...,θN

p(θ1, . . . ,θN |Y1, . . . ,YN) = arg min
θ1,...,θN

Υ(θ1, . . . ,θN)

Υ(θ1, . . . ,θN) = −
N∑
i=1

log p(Yi|θi )− log p(θ1, . . . ,θN)

= data fitting terms + coupling
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Facing the challenges Multiway Data Fusion

Some flexible coupled LRA models

Noisy exact coupling on Ci

∀ i ∈ [1,N],


T i = (Ai ⊗ Bi ⊗ Ci )IR + E i

Ci = C∗ + Γi

Γi ∼ AN
(

0, 1
σ2
c,i

I⊗ I

)

Υ(θ1, . . . ,θN ,C
∗) = −

N∑
i=1

1

σ2
1

‖T i − (Ai ⊗ Bi ⊗ Ci )IR‖2
F −

N∑
i=1

1

σ2
ci

‖Ci − C∗‖2
F

PARAFAC2 [Harshman,1972][Bro,1999][Cohen,2018]

∀ i ∈ [1,N],


Mi = AiΣiB

T
i + Ei

Ai = A∗

Bi = PiB
∗

PT
i Pi = I
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Facing the challenges Multiway Data Fusion

PARAFAC2 vs PARAFAC on LC-MS data

Many other solutions can be thought of to tackle subject variability!
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Facing the challenges Multiway Data Fusion

Perspectives

Variability along time / sensors

Characterize variations along time/sensors within a multiway model?
Or in a statistical manner, i.e. with priors on the evolution of coupled
parameters?

Applications: automatic stereo transcriptions, temporal spectral
unmixing and super resolution. . .

Interactions between machine learning and multimodality

Learning the coupling relationship

Tensor dictionary learning
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Challenge III: Constrained large decompositions.





Fast nonnegative tensor decomposition

Unconstrained compression . . .

≈ •1 •2 •3

T ≈ (U

R1

⊗ V ⊗ W) G

Ac

Bc
Cc

A ≥ 0

B ≥ 0
C ≥ 0

= •1 •2 •3

G = ( Ac ⊗ Bc ⊗ Cc ) IR

T ≈ (U⊗ V ⊗W)G = (UAc ⊗ VBc ⊗WCc)IR
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Fast nonnegative tensor decomposition

. . . but constrained decomposition!

Compressed domain NN CP:

min.
Ac ,Bc ,Cc

‖G − (Ac ⊗ Bc ⊗ Cc)I‖

sub. to ÛAc , V̂Bc , ŴCc > 0

Issue Solution
Easy unconstrained/difficult constrained Unconstrained solution→ projection

Difficult exact projection ÛAc Approximate projection
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Fast nonnegative tensor decomposition

Approximate projection and PROCO-ALS

Approximate projection Π:

Given Least Squares update Âc

1 Decompression: Â := ÛÂc

2 Projection: Â :=
[
Â
]+

3 Compression: Âc := ÛTÂ

Π
[
Â
]

= UT[UAc ]+

Projected and compressed framework (PROCO) [Cohen,2014]
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Fast nonnegative tensor decomposition

Other possible algorithms and related problems

PROCO-ALS [Cohen,2014], Compressed-AOADMM [Cohen,2016]

minimize ‖Ĝ − (Ac ⊗ Bc ⊗ Cc)IR‖2
F

w.r.t. Ac ,Bc ,Cc

s.t. ÛAc � 0

Tensorlab 3.0 [Vervliet,2016]

minimize ‖
(

Û⊗ V̂ ⊗ Ŵ
)
Ĝ − (A⊗ B⊗ C)IR‖2

F

w.r.t. A,B,C
s.t. A � 0

AOADMM [Huang,2015], FastNNLS [Bro,1997], ANLS

minimize ‖T − (A⊗ B⊗ C)IR‖2
F

w.r.t. A,B,C
s.t. A � 0
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Fast nonnegative tensor decomposition

Application in Fluorescence Spectroscopy

Fluorescence spectroscopy data:
excitation spectra
emission spectra
mixtures

multimodal chemometrics data set from Acar et al1

Description

5 compounds: Valine-Tyrosine-Valine (Val), Tryptophan- Glycine (Gly),
Phenylalanine (Phe), Maltoheptaose (Mal) and Propanol (Pro)

Nb. of excitation wave lengths 21 (A)
Nb. of emission wave lengths 251 (B)

Nb. of Mixtures 28 (C)
Missing values 30% (replaced by zeros)

1
E. Acar, A.J. Lawaetz, M.A. Rasmussen, and R. Bro. Structure-revealing data fusion model with applications in

metabolomics. In Conf. Proc. IEEE Eng. Med. Biol. Soc., pages 6023– 6026. IEEE, 2013
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Fast nonnegative tensor decomposition

Application to Fluorescence Spectroscopy

ANLS (nonnegative) and ProCo-ALS
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Fast nonnegative tensor decomposition

Conclusions and Perspectives

Studied topics

Identification through known dictionaries.

Multimodality and Subject Variability in matrix/tensor low rank
factorization models for chemometrics/neuroimaging.

Constrained tensor compression and decomposition, especially in the
context of nonnegativity.

Things I am (or would like to be) working on

Flexible dictionary constraints, tensor dictionary learning.

Data fusion for temporal series of hyperspectral images.

Multispectral/Hyperspectral fusion for spectral unmixing.

Audio source separation with tensor models, which calls for new
tensor decomposition models and non-euclidean error metrics.
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Thank you for your attention!



Fast nonnegative tensor decomposition

State-of-the-art (non-exhaustive)

Continuous approaches
Lasso, GLUP [Ammanouil 2014], FGNSR [Gillis 2016]
+ Robust, optimization criterion. − Slow.

Greedy/Non-iterative method
Geometric algorithms (pure pixel hypothesis)
N-FINDR [Winter 1999], VCA [Nascimento 2005], SPA [Gillis 2014,
Businger Golub 1965]
Matching pursuit approaches
SDSOMP[X.Fu 2013, Tropp 2006]

+ Fast − Not robust, No explicit criterion

Pixel-wise brute force algorithms
MESMA [Roberts 1998], MESLUM, AUTOMCU, AMUSES
[Degerickx 2017]
+ Flexible − No low rank property, Slow.

Statistical methods
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Fast nonnegative tensor decomposition

Experiment on the URBAN HSI

r = 6 r = 8

Time (s.) Rel. err. Time (s.) Rel. err.

RAND-wo 0.00 7.87 0.00 11.66
d-RAND-wo 22.46 (13) 5.09 34.87 (18) 5.35

RAND-av 0.02 11.51 0.02 9.60
d-RAND-av 23.91 (13) 4.65 30.77 (15) 4.65

RAND-be 0.00 13.77 0.00 5.54
d-RAND-be 22.01 (11) 4.36 36.18 (19) 4.16

VCA 2.01 18.38 1.86 20.11
d-VCA 26.89 (15) 5.83 29.06 (14) 5.05

SPA 0.30 9.58 0.30 9.45
d-SPA 24.37 (13) 4.67 28.61 (14) 4.62

SNPA 24.34 9.63 36.72 5.64
d-SNPA 23.04 (13) 4.94 27.94 (13) 3.97

H2NMF 19.02 5.81 22.35 5.47
d-H2NMF 26.66 (15) 4.05 28.92 (14) 4.24

FGNSR-100 2.73 5.58 2.55 4.62
d-FGNSR-100 26.72 (14) 4.36 20.81 (8) 4.04

Table: Numerical results for the Urban data set.
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