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Separability: a fundamental property

Definition: Separability
Let f: R™ x R™ x R™ — R, m; € IN. Map f is said to be separable if

there exist real maps f1, fa2, f3 so that

f(x,y,2) = fi(z) f2(y) f3(2)

Of course, any order (i.e. number of variables) is fine.

Examples:
(ayz)" = a"y"2", Y = e
/. fy h(z) )dxdy = ([, h(z) d:c) (fy g(y)dy)
Some usual function are not separable, but are written as a few separable ones!
® cos(a + b) = cos(a) cos(b) — sin(a) sin(b)
® log(zy) = log(z)lyer + leer log(y)
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Some tricks on separability

A fun case: exponential can be seen as separable for any given order.

Let y1(x),y2(x), ..., yn(z) sit. z = Xn:yl(r) for all z € R,

7

n
& — H evi(@)
i=1

Indeed, for any z, setting y1, y» as new variables,

% = eVitvatystFun . f(yh . ’yn)

Then f is not a separable function of 3. y;, but it is a separable function of y;:

Fyi,ye, . yn) = e e? e = fiy) f2(y2) - . . fu(yn)

Conclusion: description of the inputs matters !
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Separability and matrix rank

Now what about discrete spaces? (z,y, z) = {(zi, y;, 2k) icl,jes ke K
— Values of f are contained in a tensor Tx = f(zi,y;, 2k)-

Example: €”* is a vector of size I. Let us set z; =i for ¢ € {0, 1,2, 3}.
el e%e
et | | et | [ e° ® el
2 | T e2e0 | T 2 K| 1
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Here, this means that a matricized vector of exponential is a rank one matrix.

(o a]=[a]te @

Setting i = j2' + k2°, f(4,k) = e¥*F is separable in (4, k).

Conclusion: A rank-one matrix can be seen as a separable function on a grid.
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Tensor rank??

We can also introduce a third-order tensor here:
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By “analogy” with matrices, we say that a tensor is rank-one if it is the
discretization of a separable function.
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From separability to matrix/tensor rank

From now on, we identify a function f(z;,y;, zx) with a three-way array 7; j k.

Definition: rank-one tensor

A tensor T; j x € R™*7*¥ is said to be a [decomposable] [separable] [simple]
[rank-one] tensor iff there exist a € RY,b € R’,c € R so that

Ti g = asbjcr

or equivalently,
T=a®b®c

where ® is a multiway equivalent of the exterior product a ® b = ab®.

What matters in practice may be to find the right description of the inputs !!
(i-e. how to build the tensor)

f(ZE,y,Z,t,...) T = a®b®c
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ALL tensor decomposition models are based on separability

CPD:
/ /
T:ZZ:1aq®bq®Cq - ot
T = a®h®at - + Qb Qc

Tucker:

T1,72,T3
T = Z 9q192430q1 ® bq2 ® Cq3

q1,92,93=1

Hierarchical decompositions: for another talk, sorry :(

Definition: tensor [CP] rank (also applies for other decompositions)

rank(T) = min{r | T =3 /_, ag ® by ® cq}

Tensor CP rank coincides with matrix “usual” rank! (on board)
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If | were in the audience, | would be wondering:
® Why should | care??
— | will tell you now.

® Even if | cared, | have no idea how to know my data is somehow separable
or a low-rank tensor!
— | don’t know, this is the difficult part but at least you may think about separability in the future.

— It will probably not be low rank, but it may be approximately low rank!
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Making use of low-rank representations

Let A = [a1,az,...,ar], B and C similarly built.

Uniqueness of the CPD

Under mild conditions
krank(A) + krank(B) + krank(C) — 2 > 2r, (1)
the CPD of T is essentially unique (i.e.) the rank-one terms are unique.

This means we can interpret the rank-one terms aq, by, cq
— Source Separation!

Compression (also true for other models)
The CPD involves r(I 4+ J + K — 2) parameters, while 7 contains IJK entries.

If the rank is small, this means huge compression/dimentionality reduction!
® missing values completion, denoising
® function approximation

® imposing sparse structure to solve other problems (PDE, neural networks,
dictionary learning. . .)
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Approximate CPD

® Often, T & > aq ® by ® ¢q for small r.
q

® However, the generic rank (i.e. rank of random tensor) is very large.

® Therefore if T =37 aqg ® by ® cq + N with N some small Gaussian noise,
it has approximatively rank lower than r but its exact rank is large.

Best low-rank approximate CPD

For a given rank r, the cost function

n(4,B,C) =T - Zaq ® by ® Cq”ﬁ*
q=1
has the following properties:
® it is infinitely differentiable.
it is non-convex in (A, B,C'), but quadratic in A and B and C.

® its minimum may not be attained (ill-posed problem).

My favorite class of algorithms to solve aCPD: block-coordinate descent!
11/34



Example: Spectral unmixing for Hyperspectral image processing

'400 800 1200 1600 2000 2400
Wavelength (nm)

1
8
6
4
2
o

'400 800 1200 1600 2000 2400
Wavelength (nm)

1 Pixels can contain several materials — unmixing!
2 Spectra and Abundances are nonnegative!

3 Few materials, many wavelengths
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Spectral unmixing, separability and nonnegative matrix factorization

One material ¢ has separable intensity:

Iq(flf, Y, A) = wQ(A)hQ('xv y)

where wyq is a spectrum characteristic to material ¢, and hq is its abundance

map.

Therefore, for an image M with r materials,

I y7 qu )

This means the measurement matrix M; ; = I(pixel,, ;) is low rank!

Nonnegative matrix factorization

argmin ||M — qu ||§:
W>0,H>0 o

where M; ; = M ([z ®k yi, \j) is the vectorized hyperspectral image.

Conclusion: | have tensor data, but matrix model! Tensor data #* Tensor model y
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ProblemS

1 How to deal with the semi-supervised settings?

® Dictionary-based CPD [C., Gillis 2017]
® Multiple Dictionaries [C., Gillis 2018]

2 Blind is hard! E.g., NMF is often not identifiable.

Identifiability of Complete Dictionary Learning [C., Gillis 2019]
Algorithms with sparse NMF [C., Gillis 2019]

3 What about dealing with several data set (Hyper-Multispectral, time
data)?
® Coupled decompositions with flexible couplings. (Maybe in further
discussions)
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Semi-supervised Learning with LRA
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A boom in available resources

Nowdays, source separation may not need to be blind!

Hyperspectral images:
® Toy data with ground truth: Urban, Idian Pines. ..
® Massive ammount of data: AVIRIS NextGen
® Free spectral librairies: ECOSTRESS

How to use the power of blind methods for supervised learning?

This talk

Pre-trained dictionaries are available

Many other problems (TODO)
® Test and Training joint factorization.
® Mixing matrix pre-training with domain adaptation.

® | earning with low-rank operators.
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Using dictionaries guaranties interpretability

NMF 400
400 400 400 200
200 200
200 200 200 100
0 0 0 0 0 0
0 100 0 100 100 0 100 0 100 0 100
Spectral band index
d>r

Intensity

Idea: Impose /
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sparse coding and 1-sparse coding

1st order model (sparse coding):

m = XT:)\quq |:|
g=1

= D(;,K)A

e
L

2d order model (collaborative sparse coding):

o= Sa,en L1 -
q=1

= D(;,K)B

= DB ::IIIIIIIIIIII

DX\ |:|
form € R™, sqin [1,d], A\ € R
and ds, € D, K = {sq,q € [1,7]}.
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Tensor sparse coding

Tensor 1-sparse coding [C., Gillis 17,18]

T:stq®bq®cq

q=1

® Generalizes easily to any order.
® Alternating algorithms can be adapted easily. Low memory requirement.

Can be adapted for multiple atom selection (future works).
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Theoretical gain [C., Gillis 18]

Theorem: Matrix factorization is identifiable

If spark(D) > r, r = rank(M), #K = r, and if there exist M = D(:,K)B,
then this factorization is unique up to permutations.

Theorem: Tensor factorization is often identifiable

If spark(D) > r, r = rank(M), #K = r, and if there exist
T =2 4—1ds, ®bg ® cq, then the following holds:

(B ® C) is full rank = the factorization is unique.

Theorem: 3d order best low-rank approximation exists
If spark(D) > r, r = rank(M) and #/K = r, then the minimum of

(K, B,C) = 1T = du, ® by ® |3
q=1

always exists.

Earlier results for Multiple Measurements Vectors: [Cotter 05, Chen 06] 20/34



Yet another alternating algorithm

argmin | T = a,®by ® gl + A|A = D(:, K)||%

A,B,C,K =1

MPALS

Iterate until convergence:
1. Factors are updated by any well-known algorithm (ALS, gradient-based

methods. . . ).
2. K is obtained by finding the closest atom in D for each column of A.
3. Increase A if necessary.

tricks:
® To impose that no atom is selected twice, solve an assignment problem.
® |f factors are constrained, simply use any off-the-shelf solver.

® Parameter A may be tuned for naive flexible dictionary constraint.
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Tentative application : Spectral unmixing

M =M(,K)B, B>0

500

—trees
——roof tops
400 —dirt
——grass
——roofs and dirt
300 —roads

20 40 60 80 100 120 140 160
band number

Figure: Spectral signatures and abundance maps identified using MPALS for the
Urban data set with » = 6.

We badly need more interesting datal
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Extensions

Flexible dictionary constraint: Using known/learnt p(A|D).

Multiple Dictionaries: [C., Gillis 2018]

A:H[Dl(:,lcl),...,DN(:,ICn)], #]C1 Sd“ szz >r

Sources a; Libraries Dy
g
A‘

Multiple atoms selection: A = DS, |sil]lo < k
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Complete Dictionary Learning: Uniqueness and Algorithms with
nonnegativity
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Complete Dictionary Learning
Given M € R**" and fixed r < d < n, find D € R**" and B € R"*" such
that

M=DB=Y d,®b,,
q=1

[billo < k <, Vi€ [l,n]

Problem: Deterministic conditions for the (essential) uniqueness of CDL.

other name: Low-rank Sparse Component Analysis
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Our main results [C., Gillis, 2019, accepted]

Sparsity may be enough to ensure uniqueness, even with a tractable number of
samples!

Theorem (Simplified version)

If each hyperplaned spanned by all but one columns of D contain more than
r(r—2)

——%~ columns of M with full spark, then CDL is essentially unique.

This implies O(#) data points are sufficient for ensuring uniqueness.

Tightness: The result is tight if k=1 or k =r — 1 or k = ar with fixed
a €]0,1].

® Contredicts [Georgiev et. al., 2005], see counter examples.

® Improves w.r.t. previously known combinatorial bounds [Aharon 2005].
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Algorithms for nonnegative Dictionary Learning [C., Gillis, ICASSP 2019]

Or algorithms for k-sparse NMF.

s
. ‘2
argmin  ||M — E aqby|| 7
A>0,B30,b; o<k g
Ideas:
1 If k and r are small, trying all () zero patterns is tractable.

2 We can try a variant of k-means.

ESNA

1. Update A with fixed H by nonnegative least squares.
2. Update B with fixed W by trying all patterns of zeros (solving (Z)
nonnegative least squares).

ESNA should (?) be better than any nonnegative sparse coding techniques
(NNOMP, Lasso with nonnegativity constraints, ... ).

NOLRAK

1. Compute A and B with known zeros in B (averaging step)
2. Compute the zero positions of B (affectation step)
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Some experimental results

Experimental Setup:

® Goal: Solve exact NDL (identifiable)

* r=4,k=(2;3), n=(300;200), d € [4,125]

® Uniformly sampled D and B, B sparsified to ensure identifiability.
® Results averaged over N = 100 trials.

Quasi perfect reconstruction of D (%)
relative MSE on D

= NMF-HALS
= Lasso-HALS
>— a.set NNOMP
= SUNNOMP
>— NOLRAK (proposed)

relative MSE on D

Quasi perfect reconstruction of D (%)

top: k= 2; bot: k=3 28/34



There is room left for algorithmic improvement!

Also, result on uniqueness of Nonnegative CDL? Overcomplete? Noisy?
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Joint factorization models: some facts, and the linearly coupled
case.
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Joint factorizations and CPD

T:Zaq@)bq@cq

q=1
is equivalent to:

My = ASkBT = " cqraq @ by
q=1
with Tip = My, A =ay,...,ar], B=1[bi,....b;], ) = diag(C.x)

i IE-

: IE-
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Closing the gap between matrix and tensor factorization: flexible coupling

Several Matrix Factorizations:

Vk € [1,K], My = AxBL

Joint Matrix Factorizations = Matrix Factorizations:

[Mi,...,Mg] = ABT = A[B,..., BE]
— same A but different Bj.

Example: Various hyperspectral images with same materials.

Flexible Coupling: linearly coupled factors
For all k € [1, K],
My = AYBj
0 = Li(Bxk H)

where Ly, is a bilinear matrix operator and Ly (B, H) € RP3*P4, H € RP1*P2
for some integers p;.

Ly and H can be given, or learned under some structural constraints!
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Some particular cases

PARAFAC2
Ly (B, H) := By — P.H with PT P, = I and P, € R7*" (if r < J).

e PARAFAC2 supposes BF By, is constant.
® P can be learnt.

Constrained version can be difficult to deal with. [C., Bro 2018][Schenker,
C., Acar, ongoing work]

Partially coupled factors

Lk (Br, H) = ByXr — H where X, is a square diagonal matrix with 7
nonzeros.

By choosing the numbers rj, one can choose how many components are
related in each matrix.

Many models to explore!

Shift PARAFAC [Harshman 2003], Conv PARAFAC [Morup 2008], Registered
PARAFAC [C., Cabral-Farias, Rivet 2018]
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Conclusion

Separability/LRA + Machine Learning

nice research

Unsupervised Learning or Blind
Separation

f(x,y) = fi(x) f2(y)

M = AB, (A, B) € 2 Structured approximations

. Supervised Learning
T =2 0aq®b;®cq
q

Neural networks
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