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I. INTRODUCTION
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Our fil rouge

Let y ∈ R3
+ a color in RBG •

Let A ∈ R3×d
+ a collection of paint pots • • • •

We can perform conical combinations of colors

• + • = •

0.5

 250
207
176

+ 0.5

 255
140
102

 =

 252.5
173.5
139


Any

∑
i αiyi with 0 ≤ αi and

∑
i αiyi ≤ 255 is a color.
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Our fil rouge

Set d(y , ŷ) = ‖y − ŷ‖22 as the loss.

Problem 1: paint color y as well as possible using paint pots A.

Find x ∈ Rd
+ such that d(y ,Ax) is minimal

≈ ∀i , x1i•+ x2i• =
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Our fil rouge

Problem 2: given a painting {yi}i≤n, find its closest 2-color version.

Find A ∈ R3×2
+ and xi ∈ R2

+ such that ∀i ≤ n, yi ≈ Axi

≈ ∀i , x1i•+ x2i• =
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A quick quizz!

Visit https://www.wooclap.com/ITWISTQ1

https://www.wooclap.com/ITWISTQ1
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Importance of regularization

Problem 1: if A ∈ R3×d with d � 3, then

min
x∈Rd

‖y − Ax‖22

has infinitely many solution, x∗0 + z with z ∈ Ker(A). Most (all?)
of them are bad because of negative coefficients.

Problem 2: without nonnegativity, then

min
A∈R3×r , xi∈Rr

∑
i

‖yi − Axi‖22

has again infinitely many bad (negative) solutions, even for r = 2
using for instance the truncated SVD of Y = [y1, . . . , yn].
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Outline

I Nonnegative Least Squares
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I Algorithms

I Matrix and tensor rank
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II. Nonnegative Least Squares
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Cones

Definition:
For a given matrix A ∈ Rm×d , let col+(A) = {Ax | x ≥ 0}.

Proposition:
For any matrix A, the set col+(A) is a convex cone, i.e.

λ1x1 + λ2x2 ∈ col+(A)

if x1, x2 ∈ col+(A) and λ1, λ2 ≥ 0.
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Cones

The cone col+(A) may not be have low-dimensional facets.

col+

([
1 0 −1 0
0 1 0 −1

])
= R2

(but it’s all fine when A ≥ 0)
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NNLS formulation

Definition:
The NNLS problem is equivalently defined as

1. Find x ∈ argmin
x∈Rd

+

‖y − Ax‖22

2. Find b ∈ col+(A) and x ∈ Rd
+ s.t. b = Ax , b = Π⊥col+(A)(y)
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A few questions

Existence of solutions?

Uniqueness of b, of x?

Properties of a solution x?
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b exists and is unique

Proposition:

For any A ∈ Rm×d , the map

y → Π⊥col+(A)(y)

is well defined.

Proof idea:
The map f : z → ‖y − z‖22 is coercive and continuous. Because
col+ A is closed, f must attain its minimum value on col+(A).
Further, f strongly convex in Rm×d , thus in particular on its
restriction to the convex set col+(A). Strongly convex functions
admit unique global minimizers when they exist.
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NNLS: convexity

argmin
x≥0

‖y − Ax‖22 (NNLS)

Problem (NNLS) is convex but not strictly convex unless A is fcr.
Therefore, there does not exist a unique solution x in general.
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x uniqueness: exact case (interior)

Suppose that y lies in the interior of col+(A). Then

I the projection b is y itself and y = Ax always exists,

I if d > m, there is little hope for uniqueness.

I if d ≤ m and A is full column rank, then x is unique.
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x uniqueness: exact case (border)

Informally, if y belongs to a facet of col+(A), then there exist k s.t.

y = Ax , x ≥ 0, ‖x‖0 ≤ k < m

Quite unlikely in practice, and similar to the approximate case. See
[Donoho2005]
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Illustration on Problem 1

Problem 1: paint color y as well as possible using paint pots A.

So far,

I There is always a best color approximation of y with pots A.

I When A has more than 3 colors, if y ∈ col+(A), in general
there are several solutions.

What about when y /∈ col+(A)?
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Approximate case: the main result

Theorem (Night Sky Theorem [Byrne 1981]):
Suppose that

y /∈ col+(A), spark(A) > m.

Then there is a unique solution the NNLS problem, which has
most m − 1 nonzeros.
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A detour by KKT

For a convex problem

min
x∈Rd

f (x), s.t. g(x) ≤ 0, f, g convex

with an admissible solution, considering

L(x , λ) = f (x) + 〈λ, g(x)〉,

x∗ is a solution iff there exist λ∗ s.t.

g(x∗) ≤ 0, λ∗ ≥ 0, ∀i ≤ d , λ∗i gi (x
∗
i ) = 0

∇xL(x∗, λ∗) = 0
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Back to approximate NNLS

∇x‖y − Ax‖22 = 2AT (Ax − y)

The KKT conditions are

x∗ ≥ 0, λ∗ ≥ 0, λ∗i x
∗
i = 0

2AT (Ax∗ − y)− λ∗ = 0

In particular, when x∗i > 0, λ∗i = 0, thus on the support S of x∗,

AT
S (Ax∗ − y) = 0
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A marvelous equation

AT
S (Ax

∗ − y) = 0 ⇔ AT
S r = 0, r = y − b∗

As long as r 6= 0 and any AS is fcr,

I #S < m

I For any i ∈ S , ai ∈ col⊥(r) := H
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End of proof and computation of x∗

Any solution has its support in S∗ = {i ≤ d , ai ∈ H}.
Moreover, the linear system

AS∗z = b

has a unique solution for fcr AS∗ .
Consequently, once the support of a solution S∗ is known, within
the hypotheses of the Night Sky Theorem, the unique solution is
obtained by

x∗ = A†S∗y

where A
†

is the pseudo-inverse of AS∗ .
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Illustration on Problem 1

Problem 1: paint color y as well as possible using paint pots A.

I There is always a best color approximation of y with pots A.

I When A has more than 3 colors, if y ∈ col+(A), in general
there are several solutions.

I If y /∈ col+(A), with high probability, there is a unique
solution.



25/92

Illustration on Homer
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How to solve NNLS??
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Active set in NNLS

Proposition: (admitted for exact case)
Any NNLS problem has a solution x with at most m non-zeros.

If we know the support S of that solution, then

argmin
z∈R#S

‖y − ASz‖22

is solved in closed form and yields the solution (KKT).
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The LH active set algorithm

Idea: (Lawson and Hanson (1974)

1. Start with empty support S

2. Add a columns of A greedily to S

3. Compute the projection on col(AS)

4. Stop if KKT conditions are met

5. If projection has negative coefficients, move along the update
until no negatives are left

6. return to 2)
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The selection rule

S ← S ∪ argmax
j /∈S

〈aj , r〉

where r = y − Π⊥AS
(y) =: y − AxS

Recall KKT conditions

λ∗j ≥ 0, 2〈aj , y − Ax∗〉 = −λ∗j

The column with “most negative” Lagrange multiplier is chosen.

The error minz ‖y − ASz‖22 can only go down in this step.
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The backward step
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AS algorithm pros and cons

I Finite number of iterations

I Fast if warm start

I Early stop

I May test all supports

I Cold start is often slow

I No matrix version
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A Block-Coordinate algorithm

Observation: The scalar problem is solved in closed form

argmin
x∈R+

(y − ax)2 =
[y
a

]+

argmin
x∈R+

‖y−ax‖22 =
1

‖a‖22

[
aT y

]+
argmin
xT∈Rn

+

‖Y−axT‖2F =
1

‖a‖22

[
aTY

]+
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Matrix Multiplication?

Y = AX , Yji =
d∑

q=1

AjqXqi , Y =
d∑

q=1

aq ⊗ xq

https://ncase.me/matrix/

https://ncase.me/matrix/


34/92

Solving per row

We solve several NNLS problems with Y = [y1, . . . , yn] and
X = [x1, . . . , xn], i.e.

argmin
X∈Rd×n

+

‖Y − AX‖2F
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HALS

A block coordinate algorithm solves

argmin
xj∈Rn

+

‖(Y − A−jX−j)− ajxj‖2F

for each xj alternatively until convergence.

Proposition: [Bertsekas 1995, earlier?]
As long as A has no zero column, the HALS iterates converge
towards a minimizer of NNLS.
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HALS pseudocode

Algorithm 1 HALS for NNLS

Inputs: Y ,A
while Convergence is not met do

for j in [1..d] do
Compute Z = Y − A−jX−j

If aj 6= 0, set xj =

[
aTj Z

‖aj‖22

]+
end for

end while

Improvable by pre-allocation, see NMF section.
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HALS pros and cons

I Flexible (similar problems)

I Early stop

I BLAS3 matrix version

I Infinite number of steps

I Slower than AS if very good
start
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A remark

x ← 1

‖a‖22

[
aTY

]+
is exactly

I a projected least squares update.

I a projected gradient step with the Lipschitz constant as
inverse stepsize.

I a Gauss-Newton step.

∇x

[
1

2
‖Y − ax‖2F

]
(x) = −aTY + ‖a‖22x

We can use that logic to derive HALS for NNLS variants.
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HALS for sparse NNLS

Let λ > 0 and consider

argmin
X∈Rd×n

+

1

2
‖Y − AX‖2F + λ‖X‖1

To obtain the HALS update rule, consider

argmin
xj∈Rn

+

hj(xj) :=
1

2
‖Zj − ajxj‖2F + λ‖xj‖1

By setting
∇xhj(x) = −aTj Zj + ‖aj‖22x + λ1

to zero, solving and projecting, we get

x∗j =

[
aTj Zj − λ1
‖aj‖2

]+
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III. Matrix and Tensor rank(s)
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Back to the fil rouge

Problem 2: given a painting {yi}i≤n, find its closest 2-color version.

Find A ∈ R3×2
+ and xi ∈ R2

+ such that ∀i ≤ n, yi ≈ Axi

≈ ∀i , xi1•+ xi2• =

A NNLS problem for each A??
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Matrix rank

Definition:
For some matrix Y ∈ Rm×n, a factorization

Y =
d∑

q=1

aq ⊗ xq = AX

is called a rank-d decomposition of Y for d ≤ min(m, n).

Definition:
The rank of a matrix Y is the smallest d such that Y admits a
rank-d decomposition,

min

d ∈ N, Y =
∑
q≤d

aq ⊗ xq


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Matrix rank facts

The following other definitions of rank are equivalent:

I Dimension of column space of Y

I Dimension of row-space of Y

I Largest square submatrix B of Y with det(B) 6= 0

I Dimension of the Kernel of Y

I Number of positive singular values of Y

Also, it holds that

I rank(Y ) ≤ min(m, n)

I For a “generic” Y , rank(Y ) = min(m, n)

I The set {Y , rank(Y ) ≤ d} is closed.
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A reformulation of Problem 2

Let us drop nonnegativity for now. Then Problem 2 boils down to

argmin
Z∈Rm×n

‖Y − Z‖2F s.t. rank(Z ) ≤ d

For the 2-color best painting, we set d = 2. This is the projection
on the set of low-rank matrices.

Proposition:
(i) A best low-rank approximation Z ∗ always exists.
(ii) A solution is known in closed form by considering the SVD

Y = UΣV T , UTU = Im, V
TV = In, Σij = σiδij

and truncating the rank(A)− d smallest singular values.
(iii) If the dth singular value is simple then Z ∗ is unique.



45/92

A short focus on SVD

Singular Value Decomposition:
For any Y ∈ Rm×m there exist orthogonal matrices U,V ∈ Rm×m

and a nonnegative diagonal matrix Σ ∈ Rm×m
+ such that

Y = UΣV

A linear map is a rotation, a scaling/projection, and a rotation.
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A short focus on tSVD

V ,Σ,U applied sequentially Rank-one approximation
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Why truncation?

Intuition:

‖Y − Z‖2F = ‖UΣV T − Z‖2F
= ‖Σ− UTZV ‖2F
= ‖Σ− Z̃‖2F

We can guess that

min
rank(Z̃)≤d

‖Σ− Z̃‖2F = min
‖z‖0≤d

‖s − z‖22

where Diag(s) = Σ. Finally Z ∗ = UΣ(1 : d)V T .

Actual proof on Wikipedia!
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Did we solve Problem 2?
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Did we? Your opinion.

Vote at https://www.wooclap.com/ITWISTQ2

https://www.wooclap.com/ITWISTQ2
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Lunch break!!
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Nonnegative Rank

The SVD rarely provides nonnegative entries for U,V except for
d = 1, see Perron-Frobenius Theorem. We need nonnegativity
constraints!!

Definition:
Let Y ∈ Rm×n

+ a nonnegative matrix. A nonnegative matrix
factorization of Y is a factorization

Y = AX

for A ∈ Rm×d
+ and X ∈ Rd×n

+ . The smallest such d is the
nonnegative rank of Y , i.e.

rank+(Y ) = min

d ∈ N, Y =
d∑

q=1

aq ⊗ xq and aq ≥ 0, xq ≥ 0


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Tensor rank

In this talk, tensors are multidimensional arrays T ∈ Rm×n×p .

Definition:
Let Y ∈ Rm×n×p a tensor. A rank d decomposition of Y is a
factorization

Yijk =
d∑

q=1

AiqBjqCkq

for A ∈ Rm×d , B ∈ Rn×d and C ∈ Rp×d . The smallest such d is
the rank of Y , i.e.

rank(Y ) = min

d ∈ N, Y =
d∑

q=1

aq ⊗ bq ⊗ cq





53/92

Rank decomposition

Others names: CPD, PARAFAC, CANDECOMP. . .
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Computing the rank?

Computing or guessing the rank is extremely difficult in general,
except for the matrix rank.
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IV. Nonnegative Matrix
Factorization
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Exact and approximate NMF

Exact NMF (known rank d):

Find W ∈ Rm×d
+ ,H ∈ Rd×n

+ s.t. Y = WH

Approximate NMF (fixed approx. rank d , Frobenius loss):

Solve argmin
W∈Rm×d

+ ,H∈Rd×n
+

‖Y −WH‖2F

Nonconvex problem! But convex constraints!
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A little experiment

We have painted Homer with 2 colors using NNLS.

This image has nonnegative rank 2.
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A little experiment

Goal:
Recover the two colors that were used.

Procedure:
Compute 9 times a rank-2 NMF of the matrix Y ∈ R3×d

+ with an
alternating HALS algorithm (see later).
Initialized with Wij ∼ abs (N (0, 1))
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A little experiment

What will happen? Vote: https://www.wooclap.com/ITWISTQ3

https://www.wooclap.com/ITWISTQ3
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A little experiment: data

red: ground truth 2-colors
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A little experiment: reconstructions
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A little experiment: colors
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Wait a minute...

The exact rank-2 NMF problem looks actually easy.
I Normalize data
I Select column of maximal l2 normal →W1

I Find its furthest column →W2

I Solve the strongly convex resulting NNLS problem → H

Proposition:
The exact rank-2 NMF problem
is in PTIME(n).



64/92

Rank > 3

Let’s build a harder instance of Exact NMF.
Let Y ∈ R4×n

+ with no zero column.

Normalization:

Y = WH ≡ YD−1Y = WD−1W DWHD−1Y

so that Y and W may wlog belong to the simplex S3.
Furthermore,

‖Yi‖1 = 1 =

∥∥∥∥∥∑
q

W:qHqi

∥∥∥∥∥
1

= . . . = ‖H:i‖1

so that H is also normalized.
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Rank > 3

Proposition: [Vavasis2007]
Exact NMF with rank 3 < d < m as part of the input is NP-hard.

In fact this problem is still in P [Silio 1979, Agrawal 1989], nontrivially. More in the NMF book [Gillis 2020].
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A comparison with sparse coding

Sparse coding
min
x∈Rd
‖x‖0 s.t. y = Ax

is NP-hard(d), but when fixing some sparsity k < d ,

Find x ∈ Rd , ‖x‖0 = k s.t. y = Ax

is in P(d), since it is enough to test all
(d
k

)
∼ O(dk) supports.
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Approximate NMF is hard

Even rank 2 approximate NMF of a rank d ≥ 3 matrix is hard!

And even rank 1 approximate NMF of a matrix with negative
entries is NP-hard.
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It’s all nice, but how to compute (approximate) NMF?
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Alternating Algorithms

Algorithm 2 A general alternating algorithm for NMF

1: Inputs: Y , d ,W 0

2: Set k = 0
3: while Stopping criterion is not met do
4: Update Hk+1 with fixed W k

5: Update W k+1 with fixed Hk+1

6: end while

Convergence as a BCD algorithm [Bertsekas] if each NNLS has a
unique solution (hard to check).
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Alternating Algorithms

Algorithm 3 HALS algorithm for NMF

1: Inputs: Y , d ,W 0

2: Set k = 0
3: while Stopping criterion is not met do
4: Update Hk+1 with fixed W k ← NNLS HALS solver
5: Update W k+1 with fixed Hk+1 ← NNLS HALS solver
6: end while

Convergence guarantied by the PALM framework [Bolte 2014]
when no columns of W ,HT are null through the iterations. Indeed
HALS is exactly an alternating proximal gradient with Lipschitz
step.
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A second look at NNLS HALS

Algorithm 4 HALS for NNLS, solving for H

Inputs: Y ,W ,H0

while convergence criterion is not met do
for q in [1..d] do

Compute Z = Y −W−qH−q

If Wq 6= 0, set Hq =
[
WT

q Z

‖Wq‖22

]+
end for

end while
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Algorithm 4 HALS for NNLS, solving for H

Inputs: Y ,W ,H0

while convergence criterion is not met do
for q in [1..d] do

Compute Z = Y −W−qH−q

If Wq 6= 0, set Hq =
[
WT

q Z
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end while

Important tweaks:

I Precompute WtW := W TW ,WtY := W TY

I Early stop, e.g. when ‖Y −WH‖2F < 10−4‖Y −WH0‖2F
I Warm start H0 from the previous outer loop in NMF HALS
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Application 1: automatic transcription

Data:

I An audio recording.

Procedure:

I Form a time-frequency matrix Y ∈ Rn×m
+

I Perform a rank d NMF of Y .

I In principle, identify notes and activations to produce MIDI

Goals:

I Recover the music sheet solely from the audio
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Application 1: automatic transcription

Jordu.wav
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Application 1: data
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Application 1: easy case

Only the first 3 seconds, isolated notes!
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Application 1: hard case
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Application 2: Text mining for newbies

Data:

I A collection of m = 8 text files, collected from web articles.

I A dictionary of semantically useless words (from sklearn).

Procedure:

I Form a frequency matrix Y ∈ R8×n
+ (with sklearn)

I n is the number of different words in the files.

I Perform a rank 3 NMF of Y .

Goals:

I Classify articles automatically

I Uncover hidden patterns in articles

I Generally speaking, extract information
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Application 2: data

A few columns of the Y matrix
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Application 2: Estimated W
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Application 2: Estimated H
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Other NMF concepts

Separable NMF:[Arora 2012, Gillis 2013, . . .]
Columns of W are in the data. Exact separable NMF is in P, but
near-separable NMF is NP-hard.

argmin
S∈Pd ([1,n]), H≥0

‖Y − YSH‖2F
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Other NMF concepts

Minimum volume NMF:[Fu and Huang 2016]
Penalize the volume of Conv(W ). May lead to unique W and H!

argmin
W≥0,WT1m=1d H≥0

‖Y −WH‖2F + λ log det(W TW + δId)
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Other NMF concepts: β-divergence NMF

Change the cost to

dβ(x , y) =


1

β(β−1)(xβ + (β − 1)yβ − βxy (β−1)) if β /∈ {0, 1}
x log x

y − x + y if β = 1 (KL div)
x
y − log x

y − 1 if β = 0 (IS div)

and solve
argmin
W ,H≥0

∑
ij

dβ (Yij , [WH]ij)

typically with multiplicative updates [Fevotte Idier 2011].
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IV. Nonnegative Tensor
Factorization
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NTF illustrated
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NTF: similarities with NMF

A few equivalent formulations of exact NTF:

Tijk =
d∑

q=1

WiqHjqCkq =
d∑

q=1

wq ⊗ hq ⊗ cq

Yk := T::k = WDiag(Ck:)H
T

NTF can be seen as a collection of NMFs with the same W ,H up
to nonnegative scaling!

Moreover,

argmin
W ,H,C≥0

‖T −
d∑

q=1

wq ⊗ hq ⊗ cq‖2F

is still a NNLS problem with respect to one factor, e.g. H. This
problem always has a solution, which is generically unique [Qi
2016]. Factors W ,H,C are often unique too!.
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Complexity recap

Low Rank Approximation:

argmin
Z∈Rm×n(×p)

(+)

‖Y − Z‖2F s.t. rank(+)(Z ) ≤ d

Table: Properties of ranks [Lim2013, Vavasis2007, Friedland2013,
Qi2016]

mat. rank mat. rank+ ten. rank ten. rank+
exact P NP-hard ? ?

approx P NP-hard NP-h., ill-posed ?
unique Z Generic Generic ill-posed Generic

unique A,X No No Generic Generic
algorithm tSVD Heuristics ∞ Heuristics
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NTF: applying HALS

Computing the gradient:
One can check that

∇c [w ⊗ h ⊗ c] (w , h, c) = w∗ ⊗ h∗ ⊗ Ip

and therefore

1

2
∇c1 = − (w∗1 ⊗ h∗1 ⊗ Ip)

T −
d∑

q=1

wq ⊗ hq ⊗ cq


= −wT

1 Th1 +
d∑

q=2

〈w1,wq〉〈h1, hq〉cq + ‖w1‖22‖h1‖22c1

One should precompute wT
q Thq ∀q ≤ d , W TW and HTH.
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NNLS for NTF

Algorithm 5 HALS for NNLS for NTF

Inputs: T ,W ,H,C
while Convergence is not met do

for j in [1..d] do
Compute Z = T −

∑
q 6=j wq ⊗ hq ⊗ cq

If wj 6= 0 and hj , set cj =

[
wT
j Zhj

‖wj‖22‖hj‖22

]+
end for

end while
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An application of NTD to chemometrics

Material:
I Several mixtures of 3 fluorescent chemicals, in various

concentrations.

Procedure:
I Measure excitation-emission for each sample, stack in a tensor

Y .
I Perform a rank 3 approximate NTF of Y .

Goals:
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An application of NTD to chemometrics
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To go (much) further
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Take home message: Stay Positive Nonnegative!
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