Learning with Low Rank Approximations

Jeremy E. Cohen
Team Panama, IRISA, CNRS

Sisyphe Seminar, 06 Mai 2021

1/40



0 An introduction to tensor methods
o Nonnegative Tucker decomposition of music for automatic segmentation

e Heuristic extrapolation of alternating algorithms for nonnegative tensor decomposition
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Separability: a fundamental property

Definition: Separability
Let f: R xR xR — R. Map fis said to be separable if there exist real maps f;, f5, f5 so that

f(@,y,2) = fi(2) fa(y) f3(2)
Of course, any order (i.e. number of variables) is fine.
Examples:

(zyz)" = a"y"2" | eV = eV, f f h(z)g(y)dzdy = (f h(zx ) (fyq(y)dy)

Some usual function are not separable, but are written as a few separable ones!
® cos(a + b) = cos(a) cos(b) — sin(a) sin(b)
® log(zy) = log(z)1eg + 1, log(y)
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Separability and matrix rank

Now what about discrete spaces? (z,y, 2) — {(%;, ¥}, 2k) Yicr je s kex

— Values of f are contained in a tensor T, = f(z;,y;, 2,)-

Example: e”: is a vector of size I. Let us set x; =i for ¢ € {0,1,2,3}.
ed efel
el || %l | [ € ® el
2 | T e2e0 | T &2 K| ol
e3 e?el

Here, this means that a matricized vector of exponential is a rank one matrix.

(qa]-[ate er=[9]e[4]

Setting i = j2' + k2°, f(j, k) = e2** is separable in (j, k).

Conclusion: A rank-one matrix can be seen as a separable function on a grid.
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Tensor rank?

We can also introduce a third-order tensor here:
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By “analogy” with matrices, we say that a tensor is rank-one if it is the discretization of a separable
function.
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From separability to matrix/tensor rank

From now on, we identify a function f(x;,y;,2;) with a three-way array T ;..

Definition: rank-one tensor

A tensor T ;. € R™7*X is said to be a [decomposable] [separable] [simple] [rank-one] tensor iff there

exist a € RT,b € R7,c € RX so that
T ik = a;bjcy,

or equivalently,
T=a®b®c

where ® is a multiway equivalent of the exterior product a ® b = ab?.

What matters in practice may be to find the right description of the inputs!!

/7

f(l’7y72,t7...) T = a®b®c
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ALL tensor decomposition models are based on separability

Canonycal Polyadic Decomposition:

7= a,0b,0 o A

T = 4, 0b®c + - + a,0b.Qc,
Tucker Decomposition:

T = Z g‘h‘h%a‘h ® bq2 ® C‘I:s |:| ﬂ
q1,92,43=1
A ® B ®C0 N

%

T

Q

Definition: tensor [CP] rank (also applies for other decompositions)

rank(T) =min{r | T = 22:1 a, @b, ®c,}

Tensor CP rank coincides with matrix “usual” rank! (on virtual board)
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If | were in the audience, | would be wondering:
® Why should | care??
— | will tell you now.

® Even if | cared, | have no idea how to know if my data is somehow separable or a low-rank tensor!
— | don’t know, this is the difficult part but at least you may think about separability in the future.
— It will probably not be low rank, but it may be approximately low rank!
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Making use of low-rank representations

Let A = [ay,a,,...,a,], B and C similarly built.

Uniqueness of the CPD

Under mild conditions
krank(A) + krank(B) + krank(C) — 2 > 2r, (1)

the CPD of T is essentially unique (i.e.) the rank-one terms are unique.

This means we can interpret the rank-one terms a,, b,, ¢,
— Source Separation!

Compression (also true for other models)

The CPD involves r(I + J + K — 2) parameters, while 7 contains IJK entries.

If the rank is small, this means huge compression/dimentionality reduction!
® missing values completion, denoising
® function approximation

® imposing sparse structure to solve other problems (PDE, neural networks, dictionary learning...)
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The landscape of research on tensors
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My ongoing research projects

LoRAIA (ANR JCJC) Tensoptly (Inria) Music Segmentation
Semi-supervision and Tensors: Tensorly optimization layer: PhD of Axel Marmoret.
® Dictionaries/sparse coding ® Constrained models —
® Optimal Transport ® Faster algorithms Sparse/Fast Optimization
with efficient ® Customization Long-term collaboration with N.
implementations/algorithms! Gillis (UMONS).
Multimodality

Automatic Transcription
Long-term collaboration with E.

With semi-supervision and NMF.
Acar (SimulaMet).

A common trait: nonnegativity!
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0 An introduction to tensor methods
o Nonnegative Tucker decomposition of music for automatic segmentation

e Heuristic extrapolation of alternating algorithms for nonnegative tensor decomposition
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The NTD project in a glance
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Axel Marmoret Nancy Bertin Frederic Bimbot Caglayan Tuna
Doctorant UR1 CR CNRS DR CNRS Ingénieur Inria

O= Axel Marmoret, Jérémy Cohen, Nancy Bertin, Frédéric Bimbot. Uncovering Audio Patterns in Music with
Nonnegative Tucker Decomposition for Structural Segmentation. ISMIR 2020 - 21st International Society
for Music Information Retrieval, Oct 2020, Montréal (Online), Canada. pp.1-7
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Segmenting a song?

X X X

Organisation
Verse Chorus Verse Solo
of the song:

Chorus

Large scale

A B A C B’
structure:

Small scale
structure:
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on the state-of-the-a

Supervised

Signal Autosimilarity + post-processing Deep learning
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Our idea: a chromagram tensor...
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...decomposed to find redundancies!

Approximate Nonnegative Tucker Decomposition XI~WeH®Q)S

=
X e REXT*B W e RE*FF H e RT*RT_Q e RB*Re g ¢ RRF<RT>Re

18/40



Back to segmentation
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Algorithm Py 5 Ry 5 Fys Py R, Fy

NTD-based autosimilarity 53.3% 62.1% 56.6% | 66.8% 78.1% 71.1%
Barwise chromagram autosimilarity || 43.1% 45.7% 43.9% | 64.8% 68.0% 65.8%
Foote Original || 29.7% 22.3% 25.1% | 63.9% 48.6% 54.5%
Novelty[Foote2000] Aligned || 42.0% 30.0% 34.5% | 67.1% 47.7% 55.0%

. Original 22.8% 21.5% 21.5% | 46.8% 45.1% 44.7%
ConvexNMF[Nieto2013] Aliggned 31.6% 28.1% 28.8% | 50.7% 45.4% 46.5%
Spectral Original || 31.2% 30.5% 29.4% | 60.7% 60.8% 58.1%
Clustering[McFee2014] | Aligned || 49.2% 45.0% 45.0% | 65.5% 60.6% 60.3%

State-of-the-art unsupervised results!

Table: Averaged segmentation scores, and their comparison with several “blind” reference methods.

Algorithm B:  Rys  Fp. | B R, T
NTD, with “oracle ranks” for each song || 67.1% 78.2% 71.5% | 78.5% 90.2% 83.1%
Neural Networks|Grill2015] 80.4% 62.7% 69.7% | 91.9% 71.1% 79.3%

Table: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art
(non-blind) method.
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An algorithmic road
e Nicolas
Gillis,
HALS principles . UMONS 4\

~2008 |
Nonnegative Matrix MATLAB

factorization

Implementation and
acceleration
~2012

- PARAFAC
decompaosition
~2019

Nonnegative
Tucker =
~2020

.-~
cf IO -

Packages nnfac and MusicNTD
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An algorithmic road

nnfac T Lreia P\ Tensorly

1[[ O PyTorch
TensorFlow

| N
B XX
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0 An introduction to tensor methods
9 Nonnegative Tucker decomposition of music for automatic segmentation

e Heuristic extrapolation of alternating algorithms for nonnegative tensor decomposition
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Another team effort

Andersen Ang Thi Khanh Hien Le Nicolas Gillis
Post-doc, Univ. Waterloo  Post-doc, UMONS Ass. Prof, UMONS

= A. M. S. Ang, J. E. Cohen, N. Gillis, L. T. K. Hien, "Accelerating Block Coordinate Descent for
Nonnegative Tensor Factorization”, Numerical Linear Algebra Appl., 2021;e2373.

24/40



Approximate CPD

® Often, T~ Y a,®b, ®c, for small r.
q

® However, the generic rank (i.e. rank of random tensor) is very large.

® Therefore if T = Z; a,®b, ®c, + N with N some small Gaussian noise, it has
approximatively rank lower than 7 but its exact rank is large.

Best low-rank approximate CPD

For a given rank r, the cost function
T
N(A,B,C) =T = a,®b,®c,|%
q=1
has the following properties:
® it is infinitely differentiable.
it is non-convex in (4, B,C), but quadratic in A and B and C.

® its minimum may not be attained (ill-posed problem).
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Approximate Nonnegative CPD

Low-rank 7 approximate NCPD

T

Given a tensor 7, find tensor G* = ZFI a, ®b, ® ¢, that minimizes

-
(A, B,C) =T —=> a,®b, ®c,|} so that a, >0,b, >0,c, >0
q=1
® The minimum is always attained (coercivity)!

The cost is not smooth anymore.

Well-posedness
Approximate NCPD is well posed:
® the best low nonnegative rank approximation G* exists. [Lim, Comon 2009]

® most of the time, tensor G* is unique [Qi, Lim, Comon 2016]

My favorite class of algorithms to solve aNCPD: block-coordinate descent!
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Nonconvex optimization algorithms, an incomplete list

All at once
® Conjugate gradient
e ADMM
® Nonlinear Least Squares (second order)

® | evenberg Marquardt

nonnegativity imposed by interior point methods,
squaring or active set.

X ADMM < AOADMM, PG < APG
X Typically slower than BCD

O Very efficient near optimum

Block coordinate (alternating)

® Alternating proximal gradient

® Alternating nonnegative least squares (ANLS)
® HALS

® Multiplicative updates

e AOADMM

nonnegativity imposed mostly by proximal step.

O Easy to design and implement
O Convex optimization tools

O Fast in practice
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Problematic

Be cheap, be fast.
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How to make tensor algorithms faster?

HPC Sampling and Acceleration

, Randomization
Not my expertise...

e Compression ® Adagrad
® n-mode product
e NNLS ® Sketching ® Momentum
° 77 ® Subtensor sampling ® Quantification

® Fiber sampling Extrapolation

® Element-wise sampling

Yk
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Problematic

Be cheap, be fast.

Proposed solution: Extrapolated ANLS.
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Some reminders on optimization:
* ANLS
® Nonnegative least squares

® Nesterov Extrapolation
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Reminder 1: Alternating nonnegative least squares for aNCPD

Problem:
argmin  |T — 22:1 a,®b, ®c,ll%

aq20,bq20,cq20

Equivalent problem:

argmin [Ty — A(B© C)"3
A>0,B>0,0>0

where T}y is an unfolding of 7 and © is the Khatri Rao product and A = [a, ..., a,].

The ANLS algorithm (or any typicaly BCD algorithm)
loop until convergence:

® Update A using NNLS(T};;, Bo C)

® Update B using NNLS(Tm,A@ B)

® Update C' using NNLS(T[S],AQ 0)
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Reminder 2: NonNegative Least Squares

U update problem: NNLS

argmin |Y — AX|%
X>0
Convex!

.3 a

Algorithms: ‘

® Active set [Lawson Hanson 1974, Bro 1997] 7 “
¢ Hierarchical Alternating Least Squares (HALS) ! o<1l (‘6\
® Block Principal Pivoting [Kim Park 2011] !
® Any proximal gradient method ‘:
I
Note: HALS is also a BCD algorithm. . & “,
= Y -2 = R
2€ ciftﬁi I
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Reminder 3: Nesterov extrapolation for convex optimization

Given a (strongly) convex differentiable form f, L Lipschitz continuous, solve

argmin f(x)
xz€l0,1]m

Fast gradient algorithm (simplified)

® n=1/L; initialize x; y = x Y1
® |oop until convergence: BA]
D Toyg =T
2 3 = some formula(/3) "
3 x=y—nV,f v ) Lht1
4 y=v+ P —14Hq) TV, |
l
|
Note: Step 3. can be replaced by a proximal Yr |
gradient step to account for constraints. ®

Improves gradient descent convergence rate for strongly convex maps from (9(%) to 0(%)
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Contribution: Heuristic Extrapolation in BCD algorithms

________ Compute B

Extrapolate Ay Heuristic Extrapolation with Restart (HER)

® Introduce pairing variables

® Update a block, then extrapolate heuristically
Extrapolate By ® Perform restart if error increases

Different from
Extrapolate Cy ® using extrapolation in the updates

using extrapolation after each outer loop

BCD HER
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Extrapolation for ANLS using HALS with restart:

The E-HALS algorithm
e initialize A4, B,C; A, = A,B,=B,C, =C
® |oop until convergence:
1 Ay =A,Byjqg=B;Cpqg=C
2 Update f with heuristic (next slide)

3 Update A using NNLS(T},), B, © C))
4 Extrapolate A, = [A+ B(A— A, y)],

5 Update B using NNLS(Tj, 4, © C))
6 Extrapolate B, = [B + (B — Bold)]Jr

7 Update C using NNLS(T[S],Ay © B,)
8 Extrapolate € = [C'+ 5(C — C,yq)] |

® if cost function increases, restart A, = A, B, = B,C, =C

At each iteration,

1 if error has decreased, increase 3 up to a threshold 5,,,..-
2 if error has increased, decrease 3 and f3,,,.-
In any case, 5 €|0,3. ] with 3 <1. 36/40



Experimental Results: setup

Balanced dimensions, ill-conditioned factors Unbalanced dimensions, ill-conditioned factors
e r=10 ®r=12
e [=J=K=50 * I =150
® Uniform A, B,C o J=103
® g, =0.0la; +0.99a, * K=35
® Uniform A, B,C
[ ]

a; = 0.01a; + 0.99a,
Difficulty:

We test with HALS and ADMM nnls solvers, more in the paper!
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A few other extrapolation methods

= AHALS

——HER-AHALS

| e Bro-AHALS

10° Bro(orginal form)-AHALS

A T (s GR-AHALS

1'\ | = = - GR(original form)-AHALS
A . LS-AHALS

1075

10-10 |

Figure: Comparing AHALS with different acceleration frameworks on synthetic datasets
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My ongoing research projects

LoRAIA (ANR JCJC) Tensoptly (Inria) Music Segmentation
Semi-supervision and Tensors: Tensorly optimization layer: PhD of Axel Marmoret.
® Dictionaries/sparse coding ® Constrained models —
® Optimal Transport ® Faster algorithms Sparse/Fast Optimization
il cTRehamt: 0 Cusiembziion Long-term collaboration with N.
implementations/algorithms! Gillis (UMONS).
Multimodality

Automatic Transcription
Long-term collaboration with E.

With semi-supervision and NMF.
Acar (SimulaMet).

Thank you for your attention
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