PARAFAC2 Decomposition constrained on all modes

Marie Roald, Carla Schenker, Jeremy E. Cohen, Evrim Acar GDR ISIS - 19.01.22

simulamet of the Chrs

Regularised dynamic networks

Regularised dynamic networks

PARAFAC2 is a tensor decomposition method that allows the B mode to have a different factor matrix for each frontal slice

[Harshman, RA. UCLA working papers in phonetics 1972]

PARAFAC2 captures both the meaningful components and their evolution in time

However, the PARAFAC2 model fits the noise more than the PARAFAC model and yields noisy components

Therefore we want to encourage smooth components through regularisation

7
$$\mathbf{D}_k = \operatorname{diag}\left(\mathbf{c}_{k:}\right)$$

[Kiers HAL. et al. J. Chemometrics 1999]

We reformulate it to this problem

$$\begin{array}{ll} \underset{\mathbf{A}, \mathbf{\Delta}_{\mathbf{B}} \{\mathbf{P}_{k}, \mathbf{D}_{k}\}_{k \leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{\Delta}_{\mathbf{B}}^{\mathsf{T}} \mathbf{P}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} \\ \text{s.t.} & \mathbf{P}_{k}^{\mathsf{T}} \mathbf{P}_{k} = \mathbf{I} \quad \forall k \end{array}$$

8 $\mathbf{D}_k = \operatorname{diag}(\mathbf{c}_{k:})$

[Kiers HAL. et al. J. Chemometrics 1999]

9

[[]Kiers HAL. et al. J. Chemometrics 1999]

Previous work ensures smooth components by projecting the data onto a subspace of smooth data

[Helwig, N.E. Biometrical Journal 2017]

Non-negativity has been imposed via a flexible coupling approach and with a PARAFAC2 inspired regulariser

Non-negativity has been imposed via a flexible coupling approach and with a PARAFAC2 inspired regulariser

$$\mathcal{R}_1 = \sum_{k=1}^{K} \frac{\mu}{2} \left\| \mathbf{U}_k^{\mathsf{T}} \mathbf{U}_k - \mathbf{\Phi} \right\|_F^2,$$

[Yin K. et al. KDD 2020]

dynamic networks

We propose using ADMM to update the $\mathbf{B}_{\overline{k}}$ components

$\begin{array}{cc} \text{minimize} & f(\mathbf{x}) + g(\mathbf{x}) \\ \mathbf{x} \end{array}$

We propose using ADMM to update the $\mathbf{B}_{\overline{k}}$ components

$\begin{array}{ll} \text{minimize} & f(\mathbf{x}) + g(\mathbf{z}_{\mathbf{x}}) \\ \mathbf{x}, \mathbf{z}_{\mathbf{x}} \end{array}$

Auxiliary variable for the regularisation

We propose using ADMM to update the $\mathbf{B}_{\overline{k}}$ components

Auxiliary variable for the regularisation

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k},\mathbf{Z}_{\mathbf{B}_{k}},\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k},\mathbf{Z}_{\mathbf{B}_{k}},\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k},\mathbf{Z}_{\mathbf{B}_{k}},\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k}, \mathbf{Z}_{\mathbf{B}_{k}}, \mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k \leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}} \left(\mathbf{Z}_{\mathbf{B}_{k}} \right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}} \mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k},\mathbf{Z}_{\mathbf{B}_{k}},\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

To obtain a problem that can be solved by ADMM, we use an implicit constraint instead of an explicit constraint for $\mathbf{Y}_{\mathbf{B}_k}$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k},\mathbf{Z}_{\mathbf{B}_{k}},\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) + \iota_{\mathrm{PF2}}\left(\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}\right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \end{array}$$

$$\iota_{\mathrm{PF2}}\left(\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}\right) = \begin{cases} 0, & \text{if } \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi \quad \forall k \\ \infty, & \text{otherwise} \end{cases}$$

Regularised dynamic networks

To evaluate the performance for different constraints we used the following setup

- A Truncated normal distribution (I=20)
- B Created based on the regularisation/constraints and shifted for each timestep (J={30, 201, 200})
- **C** Uniform between 0.1 and 1.1 (K={20, 40})

$$\mathbf{X}_{\text{noise}} = \mathbf{X} + \eta \mathbf{\mathcal{E}} \frac{||\mathbf{X}||_F}{||\mathbf{\mathcal{E}}||_F} \mathbf{\mathcal{E}}_{ijk} \sim \mathcal{N}(0, 1)$$

50 different datasets each setup, decomposed with **5** random initialisations for all models, selected model with lowest SSE.

To compare performance of non-negative PARAFAC2, we used B_k matrices with elements from a truncated normal distribution

AO-ADMM fits the data quicker than flexible, ALS has no constraints on B mode and overfits to the noise

$$\text{FMS} = \frac{1}{R} \sum_{r=1}^{R} \mathbf{a}_{r}^{\mathsf{T}} \mathbf{\hat{a}}_{r} \mathbf{b}_{r}^{\mathsf{T}} \mathbf{\hat{b}}_{r} \mathbf{c}_{r}^{\mathsf{T}} \mathbf{\hat{c}}_{r},$$

HALS: [Cohen, JE. Bro, R. LVA/ICA 2018] ADMM : [Roald M. et al. EUSIPCO 2021]

26

There are also a variety of *structure imposing* regularisation penalties

To evaluate the performance of smoothness regularisation we used components from fluorescence spectroscopy

Standard unregularised PARAFAC2 (ALS) finds noisy components with the right overall shape

Laboratory Systems 1997]

Graph laplacian (smoothness)-based regularisation finds components that are closer to the truth

Graph laplacian (smoothness)-based regularisation finds components that are closer to the truth

To evaluate the performance with TV regularisation, we simulated piecewise constant components with 6 jumps

Again, the standard ALS algorithm yields noisy components

The components obtained with TV regularisation are closer to the ground truth

The components obtained with TV regularisation are closer to the ground truth

More details about the experiment setup and the results are available in the papers

M. Roald, C. Schenker, J. E. Cohen, E. Acar. *PARAFAC2 AO-ADMM: Constraints in all modes.* EUSIPCO2021 Submitted to SIMODS, arxiv preprint available

Additional details and the code is available <u>github.com/MarieRoald/PARAFAC2-AOADMM-EUSIPCO21</u> <u>github.com/MarieRoald/PARAFAC2-AOADMM-SIMODS</u>

dynamic networks

In summary, PARAFAC2 is a promising model for tracing evolving networks, and with PARAFAC2 AO-ADMM, we can improve model interpretability through meaningful constraints

simulamet of the

[Roald, M. et al. ICASSP 2020] [Roald M. et al. EUSIPCO 2021] In summary, PARAFAC2 is a promising model for tracing evolving networks, and with PARAFAC2 AO-ADMM, we can improve model interpretability through meaningful constraints

For the AO-ADMM scheme, we fit the modes alternatingly and solve the regularised subproblems with ADMM

> Until convergence: Update A matrix Update B_k matrices Update C matrix (D_k matrices)

The ADMM updates for the A and C matrix are well known, so we focus on how to update the B_k matrices with regularisation

Until convergence: Update A matrix Update B_k matrices Update C matrix (D_k matrices)

Using ADMM, we obtain the following update steps:

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} \end{array} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{aligned} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} \end{aligned} \right\}$$

Update the components to fit the data well, while still being close to the auxiliary variables

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} \right\}$$

Update first auxiliary variable to follow regularisation while being close to the components

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\}_{k\leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

Update second auxiliary variable to follow the PF2 constraint while being close to the components

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Z}_{\mathbf{B}_k}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \left\{ \begin{array}{l} \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} \end{array} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

Update the first scaled dual variable to correct the regularisation coupling

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Z}_{\mathbf{B}_k}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Z}_{\mathbf{B}_k}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

Update the second scaled dual variable to correct the constraint coupling

We repeat these steps N times or until convergence for every outer iteration

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\}_{k\leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

$$\{ \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)} \}_{k \leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k \leq K}} \iota_{\mathrm{PF2}} \left(\{ \mathbf{Y}_{\mathbf{B}_{k}} \}_{k \leq K} \right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\| \mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\Delta_{\mathbf{B}_{k}}}^{(t)} \right) \right\|_{F}^{2} \right)$$

$$\{ \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)} \}_{k \leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k \leq K}} \iota_{\mathrm{PF2}} \left(\{ \mathbf{Y}_{\mathbf{B}_{k}} \}_{k \leq K} \right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\| \mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\Delta \mathbf{B}_{k}}^{(t)} \right) \right\|_{F}^{2} \right\}_{F}$$

$$\{ \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)} \}_{k \leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k \leq K}} \iota_{\mathrm{PF2}} \left(\{ \mathbf{Y}_{\mathbf{B}_{k}} \}_{k \leq K} \right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\| \mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\Delta \mathbf{B}_{k}}^{(t)} \right) \right\|_{F}^{2} \right)$$

$$\{ \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)} \}_{k \leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k \leq K}} \iota_{\mathrm{PF2}} \left(\{ \mathbf{Y}_{\mathbf{B}_{k}} \}_{k \leq K} \right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\| \mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\Delta \mathbf{B}_{k}}^{(t)} \right) \right\|_{F}^{2} \right)$$