Is Nonnegative Tucker Decomposition the new NMF?
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® Nonnegative Tucker 101

® An illustration of NTD to Music Information Retrieval
® Numerical optimization methods for NTD

® Some theory on NTD and open questions

e Off topic: Tensorly
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Matrices/ Tensors as multiway arrays

Let T a tensor in R™ "2 X"d
modes: indexes of the tensor from 1 to d. e.g. i is the first mode index.

order: d. e.g. the tensor below is a third order tensor.
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Examples of tensors in data science
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Tensor as Raw Data Tensor as Processed Data
Tensor spectrogram

Tensor as Raw Data
Excitation Emission Hyperspectral Images

Matrices [courtesy of J Chanussot]
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Tensor as Data Properties
Data Moments

Tensor as Model Parameters

Convolutional Neural Networks
[figure from commons.wikimedia.org]
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Tensors and dimensionality reduction

Number of parameters:

5 -

o(n%) O(dnr)

Consequently, tensor models can be used for:

Inverse Problems

® Matrix-Tensor completion
® Blind Source separation
® Denoising, deconvolution

® Phase retrieval

p=<g] e

(’)(dnr—l— rd) (’)(dnrz)

Compression, Low Complexity Model

Big Data
Data mining
Neural Networks

Partial Differential Equations
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Tensors and dimensionality reduction

Number of parameters:

al -

o(n) O(dnr)

Consequently, tensor models can be used for:

Inverse Problems

Matrix-Tensor completion

Blind Source separation
® Denoising, deconvolution

® Phase retrieval

g=og 7T

O(dnr + r9) O(dnr?)

Compression, Low Complexity Model

Big Data
Data mining
Neural Networks

Partial Differential Equations
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What is Tucker Decomposition

The Tucker format (3d order)

Input: Data tensor 7, core dimensions r1, 2, r3
Parameters: W € R™"*1, H c R™”*2 Q € R™*" and G € Rt*"2%"

M BB
77jk - g g g VVir1 ’_Ijrg ri3 Gr1 rnr3
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What is Tucker Decomposition

The Tucker format (3d order)

Input: Data tensor T, core dimensions ri, r2, r3
Parameters: W € R"*" H e R™*2, Q € R™*™ and G € R *"2*"

n n 3

77jk = Z Z Z VVI'rl I_Ijrz ri3 Gr1 nr3

G @ G

T=(WPi@HP® QP:) [ (P @ Py @ Py) 6]

sl ok ;
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What is Tucker Decomposition

The Tucker format (3d order) V
Input: Data tensor 7T, core dimensions r1, 2, r3 \P

Parameters: W ¢ R™"*"t H ¢ R™*2 Q € R™*" and G € R##*
n r2 3
77jk - Z Z Ir\N2 r3
@ e
1 _
1

T = (WP, ®€ )

®P;1®P31)Q]
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Why Nonnegativity in Tucker decomposition, the NMF case

M= WH = WPP™'H
but if W >0 and H > 0, sometimes
WP>0and P'"H>0 = P =X
with Il a permutation matrix and ¥ a positive diagonal matrix.

A collection of sufficient conditions for NMF identifiability
® Donoho2003: Separability
® Huang2013: sufficiently scattered condition
® Miao2007, Fu2015/Lin2015: Minimum Volume [not really a condition]
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(approximate) Nonnegative Tucker Decomposition

In the remainder of this talk, about NTD
e Can we interpret NTD on an example — Patterns in music
® How to compute NTD
o A few properties around CANDELINC and identifiability
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Organisation

of the song:

Segmenting a so

IR

Verse

Chorus

Verse

Solo

Chorus

Large scale

structure:

Small scale

structure:
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A word on the state-of-the-art

Unsupervised Supervised

Signal Autosimilarity + post-processing Deep learning

12/29



Our idea: a chromagram tensor. . .

Chromagram
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... decomposed to find redundancies!

Approximate Nonnegative Tucker Decomposition X~ Wx1Hx,Qx3G
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bonus: NTD extracts patterns!

First musical pattern w 2 oo Gi., .0l "
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o Musical Rhythmic atoms
Frames atoms (columns of H) Frames
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State-of-the-art unsupervised results!

F measure, with 0.5 seconds tolerance

Original
_ Emm Re-aligned on downbeats
s Our method
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70 - Original
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60 - W= Our method
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F measure, with 3 seconds tolerance

30 -
20 -
20 -
10 - 10 -
0 - i I | 0 - I I I
Foote's CNMF Spectral NTD Foote's CNMF Spectral
Novelty Clustering Novelty Clustering
Algorithm Po.s Ro.5 Fos Ps Rs
NTD, with “oracle ranks” for each song || 67.1% 78.2% 71.5% | 78.5% 90.2%
Neural Networks[Grill2015] 80.4% 62.7% 69.7% | 91.9% 71.1%

Table: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art

(non-blind) method.
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An algorithmic road
9 Nicolas
Gillis,
HALS principles " UMONS ﬂ

~2008 |
Nonnegative Matrix MATLAB
factorization

Implementation and
acceleration
~2012
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decompaosition
~2019

Nonnegative
Tucker -
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Packages nnfac and MusicNTD
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An algorithmic road

nnfac T Lreia - P\ TensorlLy

1F O PyTorch
TensorFlow

S
XX
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Back to NMF algorithms

NMF and numerical optimization

argmin D(M; WH)
W>0,H>0
Usual loss functions:
® Frobenius loss D(M, WH) = |[M — WH||%

® Kullback-Leibler D(M, WH) = Y, KL(My, [WH];) = Y, Mj log( i) + [WH],; — M;
ij

® Beta-Divergence
® More exotic: Wasserstein distance [Rolet2016, Varol2019]0, ¢; norm [Gillis2018] ...

A few remarks:
® Problem non-convex in general for (W, H) but “solvable” for fixed W or H.
® Beta-divergence loss is separable in columns of H (or rows of W).
This calls for block-coordinate descent methods:
® Hierarchical Alternating Least Squares (£2)
® Alternating Multiplicative Updates
® Alternating Proximal Gradient
[ ]
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NTD algorithms mimic NMF algorithms

NTD and numerical optimization

argmin DIM,(W® H®Q)G)
W>0,H>0,Q>0,G>0
Usual loss functions:
® Frobenius loss D(M,(W @ H® Q)G) = |M — (W ® H® Q) G||%

* Kullback-Leibler D(M, (W ® H® Q) G) = 3, KL(Mi, (W ® H® Q) Gl ;)

A few key points:
® The core update is a “vector” update (not matrix!)

® One must pay attention to update rules, to avoid computing big intermediate representations and
Kronecker products.

Existing algorithms (sample):
® HALS + Proximal Gradient for G
® Alternating MU
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What about sparsity?

In the first NTD paper [Morup 2008], sparsity was already considered.

Sparsity?
Most papers impose sparsity with /1 norm.
Problem: Scale ambiguity!! For p > 1,
1 A
IM — WHI[E + X[WIl. > M — ;WNHH%—' + ;llWlll = [M — WH|[z + X | W[

with X' < .

® Several work around for NMF

® Constrain W on the hypersphere [LeRoux2015]
® Use a more complex sparsity metric [Hoyer2002/2004]
® Use ¢, on W [??][RoaldTBA] How to use in MU?

® Not so many are described (?) for tensor decompositions.

Work in Progress: paper and codes for NTD with beta-divs, sparsity, acceleration!
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NTD identifiability

The big open question: under which conditions is NTD identifiable/essentially unique?

A few empirical observations:

® NTD factors and core can be recovered when they are very sparse, even without explicit sparsity
imposed (sufficiently scattered??)

® Imposing sparsity helps a lot in recovering the true factors and core.

What about minimum volume? Separability?

An existing result in [Zhou/Cichocki 2014] links NTD identifiability to NMF identifiability of the
unfoldings. 23/29



NTD for nnCANDELINC [C.2017]
Problems with nnCANDELINC
® Rank of core might increase

® Factors of 7 might not be recovered
® NTD is hard to compute anyway

CANDELINC: Tucker format then PARAFAC
® Does not work in (my) pratice
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NTD for nnCANDELINC [Skau DeSantis 2022]

A few interesting concepts/facts:

® Nonnegative multilinear ranks
rank (7))

® Intersection of tensor cones and tensor product don't commute
® Minimal NTD has dimension equal to nonnegative multilinear ranks (may not exist)

® Canonical NTD when dimensions equal to nonnegative ranks of factors for a unique CPD tensor.

Proposition
Suppose 7 admits a unique CPD.
® Then there exists a canonical NTD which preserves its nonnegative rank.

® For any canonical NTD that preserves the rank, its factors have full nonnegative rank.

Core problem: selecting the right canonical NTD.
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Conclusion

Similarities between NMF and NTD
® Numerical Optimization
® Applications, to some extent
® Decomposition of data into a sum of parts

® Empirically, identifiability

Some major differences
® NTD theory requires multilinear algebra
® Almost no identifiability results available for NTD
® Connection between NTD and polytopes?
® NTD is hard to understand

® Few dedicated algorithms, e.g. efficient initialization
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Tensorly ad 1: What is Tensorly

T\ TensorLy Open source and collaborative Python toolbox for tensors

Code features:

® User guide, API, Examples at tensorly.org

® Automatic unit tests

® Back-end transparent for users and devs

® Issues/Pull Requests with reasonable response time
Contents:

® Tensor objects from Numpy, Pytorch, Tensorflow. ..

® Tensor manipulations (reshape, permute and so)

® Some tensor decompositions (CP, constrained CP, Generalized CP, Tucker, Nonnegative Tucker,
TT, PARAFAC2, CMTF)

Dataset loaders, visualisation tools
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tensorly.org

ensorly ad 2: Tensoptly project

Star history

1200 |2

® New algorithms and models

® Nonnegative/Sparse/User-defined constraint
0 using AOADMM.
® User-defined loss using GCP.

1000

600

Github Stars

® Contributions tested, documented, explained

400

(Notebooks)
200 /
o
- - o B Where to contribute
S IENB TR Er ® Backend: efficient contractions support

(TTMs, TTVs, MTTKRPs .. .)
® Algorithms: better CPD algorithms than ALS!

® Visualisation: How to look at tensors? Tucker
models?

® Benchmarking with Benchopt?

28/29



Thank you for your attention!!
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